LV-EZ1

From bildr

Jump to: navigation, search


Ultrasonic Range Finder Maxbotix LVEZ1.jpg

This is the fantastically easy to use sensor from Maxbotix. We are extremely pleased with the size, quality, and ease of use of this little range finder. The serial interface is a bit odd (it's RS232 instead of standard TTL), but the PWM and Analog interfaces will allow any micro to listen easily enough. The sensor provides very accurate readings of 0 to 255 inches (0 to 6.45m) in 1 inch increments with little or no dead zone!

Maxbotix is offering the EZ0, LV-EZ1, EZ2, EZ3, and EZ4 with progressively narrower beam angles allowing the sensor to match the application. Please see beam width explanation below.

Control up to 10 sensors with only two pins! Checkout Mikey Sklar's flame-based trampoline, the high-lighter, using the EZ1!

Features:

  • 42kHz Ultrasonic sensor
  • Operates from 2.5-5.5V
  • Low 2mA supply current
  • 20Hz reading rate
  • RS232 Serial Output - 9600bps
  • Analog Output - 10mV/inch
  • PWM Output - 147uS/inch
  • Small, light weight module

Contents

Hooking it up

Just apply 2.2-5.5v, and read the analog pin (labeled "AN") - The output is very shaky without an averaging or smoothing filter applied to it in code. You can do this easily by averaging the newest reading with the last 5-10 readings.

Code

Availability


This page is a Component on bildr. Components are pages about specific parts, and include connection details and code when available.

NOTE: All information contained within this article is pure opinion. Although this article is intended to help people, it may contain faulty or misleading information. This article is not to be considered professional opinion or advice, and is in no way a replacement for reading all safety/instructional documentation. Always remember to protect yourself when handling/using hazardous materials, as well as test new techniques before using them on projects/work intended to be handed in or used.

bildr and its contributers take NO responsibility for the information contained within.